OFFICIAL DATABRICKS PARTNER

The easiest way to hire Databricks experts

Stop wasting time and money on bad hires and focus on building great products. We match you with the top 2% of Databricks freelance developers, consultants, engineers, programmers, and experts in days, not months.

Databricks

Trusted by 2,500 global companies

  • Hire quickly

    Gain access to 5,000+ experts, available to start work immediately.

  • Quality experts

    Discover the top 1% who have passed extensive assessments.

  • Flexible terms

    Hire Databricks experts without additional employment fees or overheads.

  • Personal matching

    Partner with a personal matcher and find Databricks experts that fit your needs.

databricks partnership
Trusted Databricks expertise

A unique partnership with Databricks

We are excited to announce our exclusive partnership with Databricks, giving you access to Proxify vetted and Databricks certified experts.

Explore Databricks certified experts

Hire Databricks experts fast with Proxify

We know that finding the perfect Databricks expert can be time-consuming and expensive. That's why we've created a solution that saves you time and money in the long run.

Our Databricks experts are vetted and tested for their technical skills, English language proficiency, and culture fit aspects to ensure that we provide you with the perfect match for your engagement. With our hiring experts, you can easily discuss any issues, concerns, or onboarding processes and start your engagement quickly.

Our Databricks experts are also skilled in a diverse range of additional frameworks and tools, meaning you find the right candidate for your business needs, committed to delivering outstanding results, always.

Hire fast with Proxify

  • Role:

    Data Engineering

  • Type:

    Cloud Platform

  • Proxify rate:

    From $33.90/hr

  • Chat with a hiring expert today

  • Get matched with Databricks expert in 2 days

  • Hire quickly and easily with 94% match success

Find a Databricks Expert
Databricks

The ultimate hiring guide: find and hire a top Databricks Expert

Talented Databricks Experts available now

  • Goran B.

    Netherlands

    NL flag

    Goran B.

    Data Engineer

    Verified member

    17 years of experience

    Goran is an accomplished Data/DevOps Engineer with 14 years of commercial experience, specializing in Databricks, Big Data, Cloud technologies, and Infrastructure as Code. His expertise spans both development and operations, allowing him to seamlessly integrate these areas to drive efficiency and scalability.

    Expert in

    View Profile
  • Rihab B.

    Tunisia

    TN flag

    Rihab B.

    Data Engineer

    Verified member

    7 years of experience

    Rihab is a Data Engineer with over 7 years of experience working in regulated industries such as retail, energy, and fintech. She has strong technical expertise in Python and AWS, with additional skills in Scala, data services, and cloud solutions.

    Expert in

    View Profile
  • Ilyas C.

    Turkey

    TR flag

    Ilyas C.

    BI Developer

    Trusted member since 2023

    10 years of experience

    Ilyas is a BI Developer and Data Analyst with over ten years of experience in business analytics, data visualization, and reporting solutions. Proficient in tools like SQL, Tableau, and Qlik Sense, Ilyas excels at communicating complex technical concepts to non-technical audiences.

    Expert in

    View Profile
  • Mariana F.

    Brazil

    BR flag

    Mariana F.

    Data Scientist

    Trusted member since 2023

    6 years of experience

    Mariana is proficient in Python and R and has expertise in a range of technologies, including SQL, AWS (S3, SageMaker, Redshift), Git, PySpark, Flask, and PyTorch.

    Expert in

    View Profile
  • Lucas A.

    Brazil

    BR flag

    Lucas A.

    Data Engineer

    Verified member

    5 years of experience

    Lucas is a Data Engineer with six years of commercial experience in building and optimizing data solutions. He is proficient in Python, SQL, and NoSQL databases, with extensive expertise in tools like Airflow, Spark, and Databricks.

    Expert in

    View Profile
  • Sridhar V.

    United Kingdom

    GB flag

    Sridhar V.

    Data Engineer

    Trusted member since 2023

    11 years of experience

    Sridhar is a Data Engineer with over 11 years of experience, specializing in Data Integration, Big Data Engineering, Business Intelligence, and Cloud technologies.

    Expert in

    View Profile
  • Evangelos K.

    Greece

    GR flag

    Evangelos K.

    Data Scientist

    Verified member

    5 years of experience

    Evangelos is a Data Scientist with five years of commercial experience in startups and multinational companies. Specializing in Python, PySpark, SQL, Azure Databricks, and PowerBI, he excels in developing predictive models, creating ETL pipelines, and conducting data quality checks.

    Expert in

    View Profile
  • Goran B.

    Netherlands

    NL flag

    Goran B.

    Data Engineer

    Verified member

    17 years of experience

    Goran is an accomplished Data/DevOps Engineer with 14 years of commercial experience, specializing in Databricks, Big Data, Cloud technologies, and Infrastructure as Code. His expertise spans both development and operations, allowing him to seamlessly integrate these areas to drive efficiency and scalability.

Three steps to your perfect Databricks Expert

Find a developer

Hire top-tier, vetted talent. Fast.

Find talented developers with related skills

Explore talented developers skilled in over 500 technical competencies covering every major tech stack your project requires.

Why clients trust Proxify

  • Proxify really got us a couple of amazing candidates who could immediately start doing productive work. This was crucial in clearing up our schedule and meeting our goals for the year.

    Jim Scheller

    Jim Scheller

    VP of Technology | AdMetrics Pro

  • Our Client Manager, Seah, is awesome

    We found quality talent for our needs. The developers are knowledgeable and offer good insights.

    Charlene Coleman

    Charlene Coleman

    Fractional VP, Marketing | Next2Me

  • Proxify made hiring developers easy

    The technical screening is excellent and saved our organisation a lot of work. They are also quick to reply and fun to work with.

    Iain Macnab

    Iain Macnab

    Development Tech Lead | Dayshape

Only senior professionals, extensively vetted

Skip the resume pile. Our network represents the elite 1% of Data & AI engineers worldwide, across 700+ tech competencies, with an average of eight years of experience—meticulously vetted and instantly available.

How Proxify vets Data & AI engineers

Application process

Our vetting process is one of the most rigorous in the industry. Over 20,000 developers apply each month to join our network, but only about 2-3% make it through. When a candidate applies, they’re evaluated through our Applicant Tracking System. We consider factors like years of experience, tech stack, rates, location, and English proficiency.

Screening interview

The candidates meet with one of our recruiters for an intro interview. This is where we dig into their English proficiency, soft skills, technical abilities, motivation, rates, and availability. We also consider our supply-demand ratio for their specific skill set, adjusting our expectations based on how in-demand their skills are.

Assessment

Next up, the candidate receives an assessment; this test focuses on real-world coding challenges and bug fixing, with a time limit to assess how they perform under pressure. It’s designed to reflect the kind of work they’ll be doing with clients, ensuring they have the necessary expertise.

Live coding

Candidates who pass the assessment move on to a technical interview. This interview includes live coding exercises with our senior engineers, during which they're presented with problems and need to find the best solutions on the spot. It’s a deep dive into their technical skills, problem-solving abilities, and thinking through complex issues.

Proxify member

When the candidate impresses in all the previous steps, they’re invited to join the Proxify network.

Stoyan Merdzhanov

“Quality is at the core of what we do. Our in-depth assessment process ensures that only the top 1% of developers join the Proxify network, so our clients always get the best talent available.”

Meet your dedicated dream team

Exceptional personal service, tailored at every step—because you deserve nothing less.

Share us:

Databricks

Complete hiring guide for Databricks Developers in 2025

Authors:

Akhil Joe

Akhil Joe

Data Engineer

Verified author

Databricks, renowned for its advanced analytics and big data processing prowess, is a dynamic platform empowering developers and data scientists alike.

Let's dive into the essentials of building a stellar team that can navigate and thrive in the fast-paced world of Databricks.

Understanding Databricks

Databricks offers access to many data sources and integration with Apache Spark.

Its flexibility and customization capabilities enable the creation of a spectrum of solutions, from streamlined utilities to enterprise-level innovations. With technologies like Delta Lake and MLflow, Databricks further refine efficiency, facilitating seamless data management and machine learning workflows.

Databricks excels in high-performance data processing and real-time analytics, leveraging Apache Spark's distributed computing capabilities. Its unified platform simplifies development across industries, making it an ideal choice for organizations seeking scalable solutions.

As trends like data lakes and AI convergence shape its trajectory, Databricks remains at the forefront of innovation in data management and analytics.

As Databricks continues to dominate the global big data and analytics market, emerging trends such as the integration of AI and machine learning, alongside a heightened focus on data security, are shaping its future landscape. With its dedication to innovation and adaptability, Databricks stands poised to lead the charge in revolutionizing data-driven solutions for years to come.

Industries and applications

Databricks finds applications across various industries, including finance, healthcare, retail, and telecommunications. Its versatility lies in its ability to handle diverse data sources, ranging from structured databases to unstructured data like text and images.

Various companies leverage Databricks for tasks such as predictive analytics, real-time data processing, and recommendation systems. Its cloud-native architecture makes it a smart choice for companies seeking scalable and cost-effective solutions for their big data challenges.

Must-have technical skills for Databricks Developers

Certain technical skills are non-negotiable when hiring Databricks Developers. These foundational abilities enable the developers to utilize the Databricks platform effectively and ensure they can seamlessly drive your data projects from conception to execution.

  • Proficiency in Apache Spark: A strong understanding of Apache Spark is crucial as Databricks heavily relies on Spark for data processing and analysis.
  • Spark SQL: Knowledge of Spark SQL is essential for querying and manipulating data within Databricks environments.
  • Python or Scala Programming: Competency in either Python, R, or Scala is necessary for developing custom functions and implementing data pipelines.
  • Data Engineering: Expertise in data engineering principles, including data modeling, ETL processes, and data warehousing concepts, is fundamental for designing efficient data pipelines.
  • Cloud Platform: Familiarity with cloud platforms like AWS, Azure, or Google Cloud is essential for deploying and managing Databricks clusters.

Nice-to-have technical skills

While some skills are essential, others can enhance a Databricks developer's capability and adaptability, positioning your team at the forefront of innovation and efficiency. Some of these skills include:

  • Machine Learning and AI: Experience in machine learning algorithms and AI techniques can enhance a developer's ability to build predictive models and leverage advanced analytics capabilities within Databricks.
  • Stream Processing Technologies: Knowledge of stream processing frameworks such as Apache Kafka or Apache Flink can be beneficial for implementing real-time data processing solutions.
  • Containerization and orchestration: Understanding containerization tools like Docker and orchestration platforms like Kubernetes can facilitate the deployment and management of Databricks environments in containerized architectures.

Interview questions and answers

1. Explain the concept of lazy evaluation in Apache Spark. How does it benefit Databricks users?

Example answer: Lazy evaluation in Apache Spark refers to the optimization technique where Spark delays the execution of transformations until absolutely necessary. This allows Spark to optimize the execution plan by combining multiple transformations and executing them together, reducing the overhead of shuffling data between nodes. In Databricks, this results in more efficient resource utilization and faster query execution times.

2. What are the advantages and disadvantages of using Delta Lake in Databricks compared to traditional data lakes?

Example answer: Delta Lake offers several advantages over traditional data lakes, such as ACID transactions, schema enforcement, and time travel capabilities. However, it also introduces overhead in storage and processing.

3. How does Databricks handle schema evolution in Delta Lake?

Example answer: Databricks Delta Lake handles schema evolution through schema enforcement and schema evolution capabilities. Schema enforcement ensures that any data written to Delta Lake conforms to the predefined schema, preventing schema conflicts. Schema evolution allows for the automatic evolution of the schema to accommodate new columns or data types without requiring explicit schema updates.

4. What are the different join strategies available in Spark SQL, and how does Databricks optimize join operations?

Example answer: Spark SQL supports various join strategies, including broadcast hash join, shuffle hash join, and sort-merge join. Databricks optimizes join operations by analyzing the size of datasets, distribution of data across partitions, and available memory resources to choose the most efficient join strategy dynamically.

5. Describe the process of optimizing Apache Spark jobs for performance in Databricks.

Example answer: Optimizing Apache Spark jobs in Databricks involves several steps, including partitioning data effectively, caching intermediate results, minimizing shuffling, leveraging broadcast variables, and tuning configurations such as executor memory, shuffle partitions, and parallelism.

6. Explain the concept of lineage in Databricks Delta Lake and its significance in data governance and lineage tracking.

Example answer: Lineage in Databricks Delta Lake refers to the historical record of data transformations and operations applied to a dataset. It is essential for data governance as it provides visibility into how data is transformed and consumed, enabling traceability, auditing, and compliance with regulatory requirements.

7. How does Databricks handle data skew in Apache Spark applications, and what techniques can be used to mitigate it?

Example answer: Databricks employs various techniques to handle data skew, such as partition pruning, dynamic partitioning, and skewed join optimization. Additionally, techniques like data replication, salting, and manual skew handling through custom partitioning can help mitigate data skew issues in Spark applications.

8. Explain the difference between RDDs (Resilient Distributed Datasets) and DataFrames in Apache Spark. When would you choose one over the other in Databricks?

Example answer: RDDs are the fundamental data abstraction in Spark, offering low-level transformations and actions, while DataFrames provide a higher-level API with structured data processing capabilities and optimizations. In Databricks, RDDs are preferred for complex, custom transformations or when fine-grained control over data processing is required, while DataFrames are suitable for most structured data processing tasks due to their simplicity and optimization capabilities.

9. What are the critical features of Delta Engine, and how does it enhance performance in Databricks?

Example answer: Delta Engine in Databricks is a high-performance query engine optimized for Delta Lake. It offers features such as adaptive query execution, vectorized query processing, and GPU acceleration. It enhances performance by optimizing query execution plans based on data statistics, memory availability, and hardware capabilities, resulting in faster query processing and improved resource utilization.

10. How does Databricks support real-time stream processing with Apache Spark Structured Streaming? Describe the architecture and key components involved.

Example answer: Databricks supports real-time stream processing with Apache Spark Structured Streaming, leveraging a micro-batch processing model with continuous processing capabilities. The architecture includes components such as a streaming source (e.g., Apache Kafka), the Spark Structured Streaming engine, and sinks for storing processed data (e.g., Delta Lake, external databases).

11. Discuss the challenges of handling large-scale data in Databricks and how you would address them.

Example answer: Handling large-scale data in Databricks presents challenges related to data ingestion, storage, processing, and performance optimization. To address these challenges, I would use data partitioning, distributed computing, caching, optimizing storage formats, and advanced features like Delta Lake and Delta Engine for efficient data management and processing.

12. Describe the process of migrating on-premises workloads to Databricks. What considerations and best practices should be followed?

Example answer: Migrating on-premises workloads to Databricks involves assessing existing workloads and dependencies, designing an architecture optimized for Databricks, migrating data and code, testing and validating the migration, and optimizing performance post-migration. Best practices include leveraging Databricks features for data management, optimizing resource utilization, and monitoring performance.

13. How do Databricks support machine learning and AI workflows? Discuss the integration with popular ML frameworks and libraries.

Example answer: Databricks provides a unified platform for machine learning and AI workflows, offering integration with popular ML frameworks and libraries such as TensorFlow, PyTorch, Scikit-learn, and MLflow. It enables seamless data preparation, model training, hyperparameter tuning, and deployment through collaborative notebooks, automated pipelines, and model registry capabilities, facilitating end-to-end ML lifecycle management.

Summary

Hiring the right talent for Databricks roles is critical to leveraging the full capabilities of this dynamic platform. By focusing on the essential technical skills, you ensure your team has the expertise to manage and optimize data workflows effectively.

By possessing these essential skills and staying updated with the latest advancements in big data technologies, Databricks developers can contribute effectively to their teams and drive innovation in data-driven decision-making processes.

As you proceed with your hiring process, remember that your organization's strength lies in its people. With the right team, you can unlock new opportunities and drive your organization to new heights of success in the world of big data and analytics.

Hiring a Databricks expert?

Hand-picked Databricks experts with proven track records, trusted by global companies.

Find a Databricks Expert

Share us:

Verified author

We work exclusively with top-tier professionals.
Our writers and reviewers are carefully vetted industry experts from the Proxify network who ensure every piece of content is precise, relevant, and rooted in deep expertise.

Akhil Joe

Akhil Joe

Data Engineer

6 years of experience

Expert in Data Engineering

Akhil is an accomplished Data Engineer with over six years of experience in data analytics. He is known for enhancing customer satisfaction and driving product innovation through data-driven solutions. He has a strong track record of developing server-side APIs for seamless frontend integration and implementing machine learning solutions to uncover actionable insights. Akhil excels in transforming raw data into meaningful insights, designing and building ETL processes for financial data migration in AWS, and automating data load workflows to improve efficiency and accuracy.

Have a question about hiring a Databricks Expert?

  • How much does it cost to hire a Databricks Expert at Proxify?

  • Can Proxify really present a suitable Databricks Expert within 1 week?

  • How many hours per week can I hire Proxify developers?

  • How does the risk-free trial period with a Databricks Expert work?

  • How does the vetting process work?

Search developers by...

Role