Felipe A.

Data Scientist

Felipe ist ein hochqualifizierter Data Scientist mit über sieben Jahren Erfahrung in Fintech, Proptech, Edtech und Beratung. Er kombiniert starke technische Kenntnisse im Bereich maschinelles Lernen mit der Fähigkeit, komplexe Konzepte effektiv an Stakeholder zu kommunizieren.

Seine technischen Fähigkeiten umfassen die Arbeit mit fortschrittlichen Data Science- und ML-Tools wie Snowflake, dbt, Airflow und MLflow. Ein Höhepunkt seiner Karriere war seine Rolle an der Universität Cambridge, wo er einen fortgeschrittenen Online-Datenwissenschaftskurs entwickelte und unterrichtete, was sowohl sein Fachwissen als auch seine Fähigkeit in der Vereinfachung komplexer Themen unter Beweis stellte. Darüber hinaus spielte er bei Outra eine Schlüsselrolle beim Sicherstellen eines Multi-Millionen-Dollar-Vertrags mit Zoopla.

Felipes einzigartige Kombination aus tiefgehender technischer Expertise und starken Kommunikationsfähigkeiten macht ihn zu einem herausragenden Fachmann im Bereich Data Science.

Hauptkompetenz

  • Pytest
    Pytest 2 Jahre
  • AWS
    AWS 3 Jahre
  • Bash
    Bash 4 Jahre

Andere Fähigkeiten

  • Agile
    Agile 4 Jahre
  • PyTorch
    PyTorch 2 Jahre
  • Asana
    Asana 1 Jahre
Felipe

Felipe A.

United Kingdom

Erste Schritte

Ausgewählte Erfahrung

Beschäftigung

  • Data Scientist

    Rylee - 10 monate

    – Arbeitete bei Rylee, einer E-Commerce-Plattform, die den Kunden Produkterkenntnisse und Marktanalysen bietet, um die Strategien auf Bol.com und Amazon zu verbessern. – Erwarb die Databricks-Zertifizierung in Generative AI, die Expertise mit RAG- und Agentenmodellen demonstriert. – Entwickelte ein großangelegtes Verkaufsprognosemodell unter Verwendung interner Daten von Rylee und gescrapten Daten von Bol.com, um den Produktverkauf vorherzusagen und Bestseller zu identifizieren. – Baute eine API mit Flask und AWS Lambda, um Produktabfragen zu bearbeiten und Einblicke sowie Verkaufsprognosen bereitzustellen. – Entwarf und implementierte ETL-Pipelines unter Verwendung von dbt, Airflow und Spark, um die Merkmalsentwicklung zu automatisieren, einschließlich einer asynchronen Lösung für eine effiziente Datenabfrage über die Bol.com-API unter Berücksichtigung von Ratenlimits und der Parallelisierung in großem Maßstab; automatisierte auch die Datenabstimmung über mehrere Verkäufer. – Wandte PyTorch und Spark an, um leistungsfähige Maschinelles Lernen-Modelle zu optimieren.

    Technologien:

    • Technologien:
    • AWS AWS
    • ChatGPT API ChatGPT API
    • Data Science
    • ETL ETL
    • NumPy NumPy
    • Pandas Pandas
    • Python Python
    • SQL SQL
    • XGBoost XGBoost
    • TensorFlow TensorFlow
    • Scikit-learn Scikit-learn
    • Git Git
    • Machine Learning Machine Learning
    • Apache Spark Apache Spark
  • Data Scientist

    Homemove - 3 monate

    – Arbeitete bei Homemove, einer umfassenden Plattform, die umzugsbezogene Dienstleistungen anbietet, einschließlich Umfragen, Umzüge und Hypotheken, die in einer einzigen App integriert sind. – Entwickelte ein LLM-gesteuertes Verhandlungstool, das es Benutzern ermöglichte, Angebote zu erhalten und Preise über einen KI-Chatbot zu verhandeln, automatisch Kunden zu einem CRM hinzuzufügen und das Vertriebsteam bei erfolgreicher Verhandlung zu benachrichtigen, unter Verwendung von OpenAI-Assistenten und GPT-Modellen. – Führte eine skalierbare Datenumwandlungsinitiative durch und nutzte Snowflake für Cloud-Datenlagerung sowie Sigma für BI und Visualisierung. – Entwarf und implementierte ETL-Pipelines von Grund auf mit Snowflake, Python, SQL, dbt und Airflow, um die Datenaufnahme und -umwandlung zu automatisieren. – Baute eine prädiktive Modellierungslösung, um die Marketingkosten zu senken und das Targeting zu verbessern, indem hochgradige Umzugsprognosen identifiziert wurden. – Wandte PyTorch und Snowpark für fortgeschrittenes maschinelles Lernen an, um leistungsstarke Modelle zu optimieren. – Lieferte ein prädiktives Modell, das während der Serie-A-Finanzierungsrunde von Homemove verwendet werden sollte.

    Technologien:

    • Technologien:
    • Pytest Pytest
    • AWS AWS
    • ChatGPT API ChatGPT API
    • Data Science
    • ETL ETL
    • Keras Keras
    • Matplotlib Matplotlib
    • NumPy NumPy
    • Pandas Pandas
    • Python Python
    • Plotly Plotly
    • PyTorch PyTorch
    • SQL SQL
    • SQLAlchemy SQLAlchemy
    • Streamlit Streamlit
    • XGBoost XGBoost
    • TensorFlow TensorFlow
    • Scikit-learn Scikit-learn
    • Git Git
    • Snowflake Snowflake
    • Machine Learning Machine Learning
    • Apache Spark Apache Spark
  • Data Science Instructor and Course Developer

    Cambridge University & FourthRev - 8 monate

    – Arbeitete als Data Science-Spezialist bei FourthRev und entwickelte sowie unterrichtete einen fortgeschrittenen Online-Datenwissenschaftskurs für Studenten der Universität Cambridge. – Entwickelte und lieferte einen umfassenden Lehrplan, der neuronale Netze, NLP für KI, unüberwachtes Lernen und fortschrittliche Entscheidungsbaumalgorithmen, einschließlich XGBoost, abdeckte. – Wandte praktische Implementierungen für maschinelles Lernen an und setzte innovative Lehrmethoden ein, um die Studentenbindung und Lernresultate zu verbessern. – Demonstrierte fundierte technische Kenntnisse in der Datenwissenschaft und im maschinellen Lernen und erlangte Anerkennung von akademischen Kollegen für effektives Lehren und Lehrplangestaltung.

    Technologien:

    • Technologien:
    • Pytest Pytest
    • Data Science
    • Matplotlib Matplotlib
    • Neural Network
    • NumPy NumPy
    • Pandas Pandas
    • Plotly Plotly
    • XGBoost XGBoost
    • Scikit-learn Scikit-learn
    • Machine Learning Machine Learning
  • Senior Data Scientist

    Outra - 2 jahre

    – Arbeitete bei Outra, einem datengestützten Immobilienanalyseunternehmen, das sich darauf spezialisiert hat, haushaltsbezogene Daten zur Optimierung der Kundendienste bereitzustellen. – Migrierte die Plattform von Dataiku zu einer benutzerdefinierten Intelligence Fabric und nutzte MLflow, Airflow, Snowflake, GitHub Actions, AWS und DBT für die Datenverarbeitung. – Entwickelte zwei wichtige prädiktive Modelle zur Prognose von Haushaltslisten und Verkaufs-/Vermietungszeiträumen, wodurch eine Multi-Millionen-Dollar-Partnerschaft mit Zoopla ermöglicht wurde. – Wandte LLMs für die Dokumentation von Code, Programmierunterstützung und interaktive Chatbots für Dashboards und kundenorientierte Daten an. – Baute ETL/ELT-Pipelines, um Rohdaten zu transformieren und für die Modellierung vorzubereiten. – Erstellte Visualisierungen und Karten mit KeplerGI, Seaborn und Dataiku, um es nicht-technischen Nutzern zu ermöglichen, komplexe Daten zu interpretieren.

    Technologien:

    • Technologien:
    • Pytest Pytest
    • AWS AWS
    • ChatGPT API ChatGPT API
    • Data Science
    • ETL ETL
    • Keras Keras
    • Matplotlib Matplotlib
    • Neural Network
    • NumPy NumPy
    • Pandas Pandas
    • Python Python
    • Plotly Plotly
    • PyTorch PyTorch
    • SQL SQL
    • SQLAlchemy SQLAlchemy
    • Streamlit Streamlit
    • XGBoost XGBoost
    • TensorFlow TensorFlow
    • Scikit-learn Scikit-learn
    • Git Git
    • Apache Airflow Apache Airflow
    • Snowflake Snowflake
    • dbt dbt
    • Machine Learning Machine Learning
    • Apache Spark Apache Spark
  • Data Scientist

    Belmont Green - 2 jahre 6 monate

    – Arbeitete bei Belmont Green, einer spezialisierten Hypothekendarlehensfirma, die finanziellen und hypothekarischen Lösungen für von der Finanzkrise betroffene Kunden anbietet. – Entwickelte ein Umwandlungsmodell mithilfe von Überlebensanalysetechniken und leitete das Projekt vom Konzept bis zur Produktion. – Entwickelte maschinelles Lernalgorithmen und statistische Modelle für Zeitreihendaten mit Fokus auf Kundenbindung, Lebenszeitwert und erwartete Verlustmodelle. – Übernahm Projekte von Anfang bis Ende und stellte sicher, dass Machbarkeitsnachweise erfolgreich umgesetzt und in Produktion genommen wurden. – Implementierte maschinelle Lernalgorithmen für Cashflow, Frühablösung, Ausfall, Vorzahlung und Umwandlungsmodelle unter Verwendung von Python und R. – Wandte Cluster- und Segmentierungstechniken an, um die Produktnutzung und das Kundenverhalten für Marketing- und Strategieziele zu analysieren.

    Technologien:

    • Technologien:
    • Data Science
    • Keras Keras
    • Matplotlib Matplotlib
    • Neural Network
    • NumPy NumPy
    • Pandas Pandas
    • Plotly Plotly
    • PyTorch PyTorch
    • SQLAlchemy SQLAlchemy
    • XGBoost XGBoost
    • Scikit-learn Scikit-learn
    • Machine Learning Machine Learning

Ausbildung

  • FortbildungMachine Learning Specialization

    Stanford University · 2023 - 2023

  • FortbildungMachine Learning

    Massachusetts Institute of Technology · 2021 - 2022

  • BSc.Business Management with maths

    Kingston University · 2013 - 2016

  • BSc.Civil Engineering

    Adolfo Ibanez University · 2011 - 2013

Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten

In einem kurzen 25-minütigen Gespräch würden wir gerne:

  • Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
  • Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
  • Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche

Unterhalten wir uns